Degree Splitting of Contra Harmonic Mean Graphs

Dr.B.Shiny,
Assistant Professor, Department of Mathematics, Annai Velankanni College, Tholayavattam -629 157, Tamilnadu, India.

S.Darmin Hepsiba,
M.Phil., Scholar, Department of Mathematics,

Annai Velankanni College, Tholayavattam -629 157, Tamilnadu, India.

In this paper we contribute some new results on Contra Harmonic Mean Labeling of graphs. We investigate on some standard graphs that accept Contra Harmonic Mean Labeling and we proved that the Degree Splitting of these Contra Harmonic Mean Labeling graphs are also Contra Harmonic Mean graphs.

Keyword: Contra Harmonic Mean Graph, $\mathrm{DS}\left(\mathrm{P}_{3}\right), \mathrm{DS}\left(\mathrm{P}_{4}\right), \mathrm{DS}\left(\mathrm{P}_{3} \odot \mathrm{~K}_{1}\right), \mathrm{DS}\left(\mathrm{K}_{1,3}\right)$, etc.

1. Introduction

By a graph we mean a finite undirected graph without self-loops or parallel edges. The vertex set is denoted by $V(G)$ and the edge set is denoted by $E(G)$. A path of length ' n ' is denoted by P_{n} and the cycle of length ' n ' is denoted by C_{n}. For all other standard terminology and notations we follow Harary [2]. For a detailed survey of graph labeling we refer to J.A.Gallian [1]. The concept of Harmonic Mean Labeling has been introduced by S.Somosundaram and S.S Sandhya in 2012 [3]. The concept of Super Geometric Mean Labeling has been introduced by S.S.Sandhya, E.Ebin Raja Merly and B.Shiny in 2015 [4]. The Concept of Contra Harmonic Mean Labeling has been introduced by S.S Sandhya, S.Somosundaram and J.Rajeshni Golda in 2017. [5] Silviya Francies, V. Balaji, 2017, 'Mean Labeling on Degree Splitting graph of Star graph', International journal of Advances in applied Mathematics and Mechanics [6].

In this paper we investigate Degree Splitting of some standard Contra Harmonic Mean graphs. We will provide a brief summary of definitions and other information which are necessary for our present investigation.

Definition 1.1

A Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with p vertices and q edges is called a Harmonic Mean graph if it is possible to label the vertices $x \in \mathrm{~V}$ with distinct labels $f(x)$ from $1,2 \ldots \ldots q+1$ in such a way that when each edge $e=u v$ is labeled with $f(u v)=\left\lceil\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rceil$ or $\left\lfloor\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rfloor$ then the edge labels are distinct,. In this case f is called Harmonic Mean Labeling of G.

Definition 1.2

A Graph $G(\mathrm{~V}, \mathrm{E})$ is called a Contra Harmonic Mean graph with p vertices and q edges, if it is possible to label the vertices $\mathrm{x} \in \mathrm{V}$ with distinct element $f(x)$ from $0,1, \ldots . . q$ in such a way that when each edge $e=u v$ is labeled with $f(e=u v)=\left\lceil\frac{f(u)^{2}+f(v)^{2}}{f(u)+f(v)}\right\rceil$ or $\left\lfloor\frac{f(u)^{2}+f(v)^{2}}{f(u)+f(v)}\right\rfloor$ with distinct edge labels. Here f is called a Contra Harmonic Mean Labeling of G.

Definition 1.3

$$
\text { Let } \mathrm{G}=(\mathrm{V}, \mathrm{E}) \text { be a graph with } V=S_{1} \cup S_{2} \cup \ldots \cup S_{t} \cup T \text {, Where each } \mathrm{Si} \text { is a set of }
$$ vertices having atleast two vertices and $\mathrm{T}=\mathrm{V}-\cup \mathrm{S}_{\mathrm{i}}$. The degree splitting graph of G is denoted by DS (G) and is obtained from G by adding vertices w_{1}, w_{2} \qquad w_{t} and joining w_{i} to each vertex of $\mathrm{S}_{\mathrm{i}}(1 \leq \mathrm{i} \leq \mathrm{t})$. The graph G and its degree splitting graph DS (G) are given in Figure 1.

Figure: 1

Definition 1.4

A Path P_{n} is a walk in which all the vertices are distinct.

Definition 1.5

The graph obtained by joining a single pendent edge to each vertex of a path P_{n} is called $\mathbf{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$ graph.

Definition 1.6

The graph obtained by joining K_{2} to each vertex of a path P_{n} is called $\mathbf{P}_{\mathrm{n}} \odot \mathbf{K}_{2}$ graph.

Definition 1.7

A Complete Bipartite graph $K_{m, n}$ is a bipartite graph with bipartition $\left(V_{1}, V_{2}\right)$ such that every vertex of V_{1} is joined to all the vertices of V_{2}, where $\left|\mathrm{V}_{1}\right|=\mathrm{m}$ and $\left|\mathrm{V}_{2}\right|=\mathrm{n}$. A star graph is the complete bipartite graph $\mathrm{K}_{1 \text {,n }}$.

Definition 1.8

A Cycle C_{n} is a closed path.
Theorem 1.9: Any path P_{n} is a Contra Harmonic Mean graph.
Theorem 1.10: Any cycle $C_{n} n \geq 3$ is a Contra Harmonic Mean graph.
Theorem 1.11: Star $K_{1, n}$ is a Contra Harmonic Mean graph.
Theorem 1.12: $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$ is a Contra Harmonic Mean graph.

2. Main Results

Theorem: 2.1
The graph nDS $\left(\mathrm{P}_{3}\right)$ is a Contra Harmonic Mean graph.

Proof:-

Let $\mathrm{G}=\mathrm{nDS}\left(\mathrm{P}_{3}\right)$. Let the vertex set of G be $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$.
Let $\mathrm{V}=\left\{\mathrm{v}_{1}{ }^{\mathrm{i}}, \mathrm{v}_{2}{ }^{\mathrm{i}}, \mathrm{v}_{3}{ }^{\mathrm{i}}, \mathrm{w}_{1}{ }^{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ be the vertex set of $\mathrm{i}^{\text {th }}$ copy of $\mathrm{DS}\left(\mathrm{P}_{3}\right)$
The graph DS $\left(\mathrm{P}_{3}\right)$ is given below,

Figure: 2
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1, \ldots \ldots . \mathrm{q}\}$ by
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{1}\right)=0$

$$
\mathrm{f}\left(\mathrm{v}_{1}{ }^{i}\right)=4 \mathrm{i}-3,2 \leq \mathrm{i} \leq \mathrm{n}
$$

$\mathrm{f}\left(\mathrm{v}_{2}{ }^{1}\right)=1$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{\mathrm{i}}\right)=4 \mathrm{i}-2,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{1}\right)=2$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{\mathrm{i}}\right)=4 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=4 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}} \mathrm{v}_{2}{ }^{\mathrm{i}}\right)=\quad 4 \mathrm{i}-3,1 \leq \mathrm{i} \leq \mathrm{n}$.
$\mathrm{f}\left(\mathrm{V}_{2}{ }^{\mathrm{i}} \mathrm{v}_{3}{ }^{\mathrm{i}}\right)=\quad 4 \mathrm{i}-2,1 \leq \mathrm{i} \leq \mathrm{n}$.
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{1} \mathrm{w}_{1}{ }^{1}\right)=4$
$\mathrm{f}\left(\mathrm{V}_{\mathrm{l}}{ }^{\mathrm{i}} \mathrm{w}_{1}{ }^{\mathrm{i}}\right)=4 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n}$.
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{1} \mathrm{w}_{1}{ }^{1}\right)=3$,
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{\mathrm{i}} \mathrm{w}_{1}{ }^{\mathrm{i}}\right)=4 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n}$.
Thus $n D S\left(\mathrm{P}_{3}\right)$ admits Contra Harmonic Mean Labeling. Hence $\mathrm{nDS}\left(\mathrm{P}_{3}\right)$ is a Contra Harmonic Mean graph.

Example 2.2:

Contra Harmonic Mean Labeling of $4 \mathrm{DS}\left(\mathrm{P}_{3}\right)$ is shown in Figure 3.

Figure: 3

Theorem: 2.3

The graph $\mathrm{nDS}\left(\mathrm{P}_{4}\right)$ is a Contra Harmonic Mean graph.

Proof:-

Let $G=n D S\left(P_{4}\right)$. Let the vertex set of G be $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$. Let $V=\left\{V_{1}{ }^{i}, \quad V_{2}{ }^{i}\right.$, $\left.\mathrm{v}_{3}{ }^{\mathrm{i}}, \quad \mathrm{V}_{4}{ }^{\mathrm{i}}, \quad \mathrm{w}_{1}{ }^{\mathrm{i}}, \mathrm{w}_{2}{ }^{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ be the vertex set of $\mathrm{i}^{\text {th }}$ copy of $\mathrm{DS}\left(\mathrm{P}_{4}\right)$

The graph DS $\left(\mathrm{P}_{4}\right)$ is shown in Figure 4

Figure: 4
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1, \ldots . \mathrm{q}\}$ by
$\mathrm{f}\left(\mathrm{V}_{1}{ }^{1)}=0\right.$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}}\right) \quad=7 \mathrm{i}-5,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{1)} \quad=1\right.$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{\mathrm{i}}\right) \quad=7 \mathrm{i}-3,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{1}\right)=2$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{\mathrm{i}}\right) \quad=7 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{4}{ }^{1}\right)=5$
$\mathrm{f}\left(\mathrm{v} \mathrm{q}^{\mathrm{i}}\right) \quad=7 \mathrm{i}-4,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{1}{ }^{1}\right)=3$
$\mathrm{f}\left(\mathrm{w}_{1}{ }^{\mathrm{i}}\right)=7 \mathrm{i}-6,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{2}{ }^{\mathrm{i}}\right) \quad=7 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$
The edges are labeled with
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{1} \mathrm{v}_{2}{ }^{1}\right)=1$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}} \mathrm{v}_{2}{ }^{\mathrm{i}}\right)=7 \mathrm{i}-4,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{1} \mathrm{~V}_{3}{ }^{1}\right)=2$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{\mathrm{i}} \mathrm{V}_{3}{ }^{\mathrm{i}}\right)=7 \mathrm{i}-2,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{3} \mathrm{i}^{\mathrm{V}} \mathrm{A}^{\mathrm{i}}\right)=7 \mathrm{i}-3,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{1} \mathrm{~W}_{1}{ }^{1}\right)=3$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}} \mathrm{W}_{1}{ }^{\mathrm{i}}\right)=7 \mathrm{i}-6,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{1} \mathrm{~W}_{2}{ }^{1}\right)=7$
$\mathrm{f}\left(\mathrm{V}_{2}{ }^{\mathrm{i}} \mathrm{w}_{2}{ }^{\mathrm{i}}\right)=7 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{4}{ }^{1} \mathrm{w}_{1}{ }^{1}\right)=5$
$\mathrm{f}\left(\mathrm{v}_{4}{ }^{\mathrm{i}} \mathrm{w}_{1}{ }^{\mathrm{i}}\right)=7 \mathrm{i}-5,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{4}{ }^{1} \mathrm{w}_{2}{ }^{1}\right)=6$
$\mathrm{f}\left(\mathrm{V}_{4}{ }^{\mathrm{i}} \mathrm{w}_{2}{ }^{\mathrm{i}}\right)=7 \mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{n}$
Thus both vertices and edges get distinct labels. Hence $\operatorname{nDS}\left(\mathrm{P}_{4}\right)$ is a Contra Harmonic Mean graph.

Example: 2.4

Contra Harmonic Mean labeling of $4 \mathrm{DS}\left(\mathrm{P}_{4}\right)$ is given in Figure:5

Figure:5

Theorem:- 2.5

The graph nDS $\left(\mathrm{P}_{2} \odot \mathrm{~K}_{1}\right)$ is a Contra Harmonic Mean graph.

Proof:-

Let $\mathrm{G}=\mathrm{nDS}\left(\mathrm{P}_{2} \odot \mathrm{~K}_{1}\right)$. Let the vertex set of G be $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots . . \cup \mathrm{V}_{\mathrm{n}}$. Let $\mathrm{V}=\left\{\mathrm{v}_{1}{ }^{\mathrm{i}}, \mathrm{v}_{2}{ }^{\mathrm{i}}, \mathrm{v}_{3}{ }^{\mathrm{i}}, \mathrm{v}_{4}{ }^{\mathrm{i}}, \mathrm{w}_{1}{ }^{\mathrm{i}}, \mathrm{w}_{2}{ }^{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ be the vertex set of $\mathrm{i}^{\text {th }}$ copy of $\mathrm{DS}\left(\mathrm{P}_{2} \odot \mathrm{~K}_{1}\right)$.

The graph DS $\left(\mathrm{P}_{2} \odot \mathrm{~K}_{1}\right)$ is shown in Figure 6.

W_{2}
Figure: 6
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots . \mathrm{q}\}$ by $\mathrm{f}\left(\mathrm{v}_{1}{ }^{1}\right)=1$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}}\right)=7 \mathrm{i}-5,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{1}\right)=2$
$\mathrm{f}\left(\mathrm{v}_{2} \mathrm{i}\right)=7 \mathrm{i}-4,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{1}\right)=4$
$\mathrm{f}\left(\mathrm{v}_{3} \mathrm{i}^{\mathrm{i}}\right)=7 \mathrm{i}-2,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{4}{ }^{1}\right)=5$
$\mathrm{f}\left(\mathrm{v} \mathrm{a}^{\mathrm{i}}\right)=7 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{1}{ }^{1}\right)=0$
$\mathrm{f}\left(\mathrm{w}_{1}{ }^{\mathrm{i}}\right)=7 \mathrm{i}-6,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{2}{ }^{\mathrm{i}}\right)=7 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$
The edges are labeled with
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}} \mathrm{v}_{3}{ }^{\mathrm{i}}\right)=7 \mathrm{i}-4,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{\mathrm{i}} \mathrm{v}^{\mathrm{i}}\right)^{\mathrm{i}}=7 \mathrm{i}-2,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{4}{ }^{\mathrm{i}} \mathrm{V}_{2}{ }^{\mathrm{i}}\right)=7 \mathrm{i}-3,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}} \mathrm{w}_{1}{ }^{\mathrm{i}}\right)=7 \mathrm{i}-6,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{V}_{2}{ }^{\mathrm{i}} \mathrm{w}_{1}{ }^{\mathrm{i}}\right)=7 \mathrm{i}-5,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{\mathrm{i}} \mathrm{w}_{2}{ }^{\mathrm{i}}\right)=7 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{V}_{4}{ }^{\mathrm{i}} \mathrm{w}_{3}{ }^{\mathrm{i}}\right)=7 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$
Thus " f " admits Contra Harmonic Mean Labeling of G. Hence $\mathrm{nDS}\left(\mathrm{P}_{2} \odot \mathrm{~K}_{1}\right)$ is a Contra Harmonic Mean graph.

Example: 2.6

Contra Harmonic Mean Labeling of $4 \mathrm{DS}\left(\mathrm{P}_{2} \odot \mathrm{~K}_{1}\right)$ is displayed in Figure 7.

Figure:7

Theorem: 2.7

The graph $\mathrm{nDS}\left(\mathrm{P}_{3} \odot \mathrm{~K}_{1}\right)$ is a Contra Harmonic Mean graph.

Proof:-

Let $\mathrm{G}=\mathrm{nDS}\left(\mathrm{P}_{3} \odot \mathrm{~K}_{1}\right)$. Let the vertex set of G be $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \ldots . \mathrm{V}_{\mathrm{n}}$. Let $\mathrm{V}=\left\{\mathrm{v}_{1}{ }^{\mathrm{i}}, \mathrm{v}_{2}{ }^{\mathrm{i}}, \mathrm{v}_{3}{ }^{\mathrm{i}}, \mathrm{v}_{4}{ }^{\mathrm{i}}, \mathrm{v}_{5}{ }^{\mathrm{i}}, \mathrm{v}_{6}{ }^{\mathrm{i}}, \mathrm{w}_{1}{ }^{\mathrm{i}}, \mathrm{w}_{2}{ }^{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ be the vertex set of $\mathrm{i}^{\text {th }}$ copy of $\mathrm{DS}\left(\mathrm{P}_{3} \odot \mathrm{~K}_{1}\right)$. The graph DS $\left(\mathrm{P}_{3} \odot \mathrm{~K}_{1}\right)$ is shown in Figure 8.

Figure: 8
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots \ldots . \mathrm{q}\}$ by
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{1}\right)=7$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}}\right)=10 \mathrm{i}-3,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{\mathrm{i}}\right)=10 \mathrm{i}-2,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{1}\right)=5$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{\mathrm{i}}\right)=10 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{4}{ }^{1}\right)=0$
$\mathrm{f}\left(\mathrm{v} \mathrm{q}^{\mathrm{i}}\right)=10 \mathrm{i}-8,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{5}{ }^{1}\right)=2$
$\mathrm{f}\left(\mathrm{vs}^{\mathrm{i}}\right)=10 \mathrm{i}-5,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v} \mathrm{\sigma}^{\mathrm{i}}\right)=10 \mathrm{i}-6,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{1}{ }^{\mathrm{i}}\right)=10 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{2}{ }^{\mathrm{i}}\right)=10 \mathrm{i}-9,1 \leq \mathrm{i} \leq \mathrm{n}$
The edges are labeled with
$f\left(v_{1}{ }^{1} v_{4}{ }^{1}\right)=7$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}} \mathrm{V}_{4}{ }^{\mathrm{i}}\right)=10 \mathrm{i}-5,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{V}_{2}{ }^{\mathrm{i}} \mathrm{V}_{5}{ }^{\mathrm{i}}\right)=10 \mathrm{i}-4,1 \leq \mathrm{i} \leq \mathrm{n}$

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{3}{ }^{1} \mathrm{v}_{6}{ }^{1}\right)=5 \\
& \mathrm{f}\left(\mathrm{v}_{3}{ }^{\mathrm{i}} \mathrm{~V}_{6}{ }^{\mathrm{i}}\right)=10 \mathrm{i}-3,2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{4}{ }^{1} \mathrm{v}_{5}{ }^{1}\right)=2 \\
& \mathrm{f}\left(\mathrm{v}_{4}{ }^{\mathrm{i}} \mathrm{v}_{5}^{\mathrm{i}}\right)=10 \mathrm{i}-7,2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{5}{ }^{\mathrm{i}} \mathrm{v}_{6}{ }^{\mathrm{i}}\right)=10 \mathrm{i}-6,1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}} \mathrm{w}_{1}{ }^{\mathrm{i}}\right)=10 \mathrm{i}-2,1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{2}{ }^{1} \mathrm{w}_{1}{ }^{1}\right)=10 \\
& \mathrm{f}\left(\mathrm{v}_{2}{ }^{\mathrm{i}} \mathrm{w}_{1}{ }^{\mathrm{i}}\right)=10 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{3}{ }^{1} \mathrm{w}_{1}{ }^{1}\right)=9 \\
& \mathrm{f}\left(\mathrm{v}_{3}{ }^{\mathrm{i}} \mathrm{w}_{1}{ }^{\mathrm{i}}\right)=10 \mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{4}{ }^{\mathrm{i}} \mathrm{w}_{2}{ }^{\mathrm{i}}\right)^{\mathrm{i}}=10 \mathrm{i}-9,1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{6}{ }^{1} \mathrm{w}_{2}{ }^{1}\right)=3 \\
& \mathrm{f}\left(\mathrm{v}_{6}{ }^{\mathrm{i}} \mathrm{w}_{2}{ }^{\mathrm{i}}\right)=10 \mathrm{i}-8,2 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

Hence nDS $\left(\mathrm{P}_{3} \odot \mathrm{~K}_{1}\right)$ is a Contra Harmonic Mean graph.

Example: 2.8

Contra Harmonic Mean Labeling of $4 \mathrm{DS}\left(\mathrm{P}_{3} \odot \mathrm{~K}_{1}\right)$ is displayed in Figure 9.

Figure: 9

Theorem : 2.9

The graph $\mathrm{nDS}\left(\mathrm{P}_{2} \odot \mathrm{~K}_{1}, 2\right)$ is a Contra Harmonic Mean graph.

Proof:-

Let $\mathrm{G}=\mathrm{nDS}\left(\mathrm{P}_{2} \odot \mathrm{~K}_{1,2}\right)$. Let the vertex set of G be $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \ldots \mathrm{~V}_{\mathrm{n}}$. Let $V=\left\{v_{1}{ }^{i}, v_{2}{ }^{i}, v_{3}{ }^{i}, \mathrm{v}_{4}{ }^{\mathrm{i}}, \mathrm{v}_{5}{ }^{\mathrm{i}}, \mathrm{v}_{6}{ }^{\mathrm{i}}, \mathrm{w}_{1}{ }^{\mathrm{i}}, \mathrm{w}_{2}{ }^{\mathrm{i}} 11 \leq \mathrm{i} \leq \mathrm{n}\right\}$ be the vertex set of $\mathrm{i}^{\text {th }}$ copy of $\mathrm{DS}\left(\mathrm{P}_{2} \odot \mathrm{~K}_{1,2}\right)$.

The graph $\operatorname{DS}\left(\mathrm{P}_{2} \odot \mathrm{~K}_{1,2}\right)$ is displayed in Figure 10.

Figure:10
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1, \ldots \ldots . . \mathrm{q}\}$ by
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{1}\right)=0$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}}\right)=11 \mathrm{i}-5,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{1}\right)=2$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{\mathrm{i}}\right)=11 \mathrm{i}-3,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{1}\right)=6$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{\mathrm{i}}\right)=11 \mathrm{i}-2,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{4}{ }^{1}\right)=9$
$\mathrm{f}\left(\mathrm{v}_{4} \mathrm{i}^{\prime}\right)=11 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{5}{ }^{1}\right)=1$
$\mathrm{f}\left(\mathrm{v}_{5}^{\mathrm{i}}\right)=11 \mathrm{i}-9,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{6}{ }^{1}\right)=7$
$\mathrm{f}\left(\mathrm{v}_{6}^{\mathrm{i}}\right)=11 \mathrm{i}-8,2 \leq \mathrm{i} \leq \mathrm{n}$
$f\left(w_{1}{ }^{1}\right)=4$
$\mathrm{f}\left(\mathrm{w}_{1}{ }^{\mathrm{i}}\right)=11 \mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{n}$

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{w}_{2}^{1}\right)=11 \\
& \mathrm{f}\left(\mathrm{w}_{2}^{\mathrm{i}}\right)=11 \mathrm{i}-10,2 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

The edges are labeled with
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{1} \mathrm{~V}_{5}{ }^{1}\right)=1$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{1} \mathrm{~V}_{5}{ }^{\mathrm{i}}\right)=11 \mathrm{i}-7,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{5}{ }^{1} \mathrm{v}_{6}{ }^{1}\right)=7$
$\mathrm{f}\left(\mathrm{v}_{5}{ }^{\mathrm{i}} \mathrm{V}_{6}{ }^{\mathrm{i}}\right)=11 \mathrm{i}-9,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{6}{ }^{1} \mathrm{v}_{4}{ }^{1}\right)=9$
$\mathrm{f}\left(\mathrm{v}_{6}{ }^{\mathrm{i}} \mathrm{V}_{4}{ }^{\mathrm{i}}\right)=11 \mathrm{i}-4,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{5}{ }^{1} \mathrm{v}_{2}{ }^{1}\right)=2$
$\mathrm{f}\left(\mathrm{v}_{5}{ }^{\mathrm{i}} \mathrm{V}_{2}^{\mathrm{i}}\right)=11 \mathrm{i}-6,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{6} \mathrm{i} \mathrm{v}_{3}{ }^{1}\right)=6$
$\mathrm{f}\left(\mathrm{v}_{6}{ }^{\mathrm{i}} \mathrm{V}_{3}{ }^{\mathrm{i}}\right)=11 \mathrm{i}-5,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{1}{ }^{1}{ }_{1}{ }^{1}\right)=3$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{\mathrm{i}} \mathrm{W}_{1}{ }^{\mathrm{i}}\right)=11 \mathrm{i}-2,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{1}{ }^{1}{ }_{1}{ }^{1}\right)=5$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{\mathrm{i}} \mathrm{w}_{1}{ }^{\mathrm{i}}\right)=11 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{1}{ }^{1}{ }_{1}{ }^{1}\right)=4$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}} \mathrm{w}_{1}{ }^{\mathrm{i}}\right)=11 \mathrm{i}-3,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{4}{ }^{1}{ }^{1}{ }_{1}{ }^{1}\right)=8$
$\mathrm{f}\left(\mathrm{v}_{4}{ }^{\mathrm{i}} \mathrm{w}_{1}{ }^{\mathrm{i}}\right)^{\mathrm{I}}=11 \mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{n}$
Thus both vertices and edges get distinct labels. Hence $n D S\left(\mathrm{P}_{2} \odot \mathrm{~K}_{1,2}\right)$ is a Contra Harmonic Mean graph.

Example: 2.10

Contra Harmonic Mean Labeling of 4DS $\left(\mathrm{P}_{2} \odot \mathrm{~K}_{1,2}\right)$ is shown in Figure:11

Figure: 11

Theorem: 2.11

The graph $n \mathrm{nS}\left(\mathrm{P}_{2} \odot \mathrm{~K}_{3}\right)$ is a Contra Harmonic Mean graph.

Proof:

Let $\mathrm{G}=\mathrm{nDS}\left(\mathrm{P}_{2} \odot \mathrm{~K}_{3}\right)$. Let the vertex set of G be $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \ldots . . \cup \mathrm{V}_{\mathrm{n}}$. Let $V=\left\{v_{1}{ }^{i}, v_{2}{ }^{i}, v_{3}{ }^{i}, v_{4}{ }^{i}, v_{5}{ }^{i}, v_{6}{ }^{i}, w_{1}{ }^{i}, w_{2}{ }^{i} / 1 \leq i \leq n\right\}$ be the vertex set of $\mathrm{i}^{\text {th }}$ copy of $\mathrm{DS}\left(\mathrm{P}_{2} \odot \mathrm{~K}_{3}\right)$

The graph $\mathrm{DS}\left(\mathrm{P}_{2} \odot \mathrm{~K}_{3}\right)$ is shown in Figure 12.

Figure:12

Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots . . \mathrm{q}\}$ by
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{1}\right)=5$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}}\right)=13 \mathrm{i}-11,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{1}\right)=8$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{\mathrm{i}}\right)=13 \mathrm{i}-10,2 \leq \mathrm{i} \leq \mathrm{n}$
$f\left(v_{3}{ }^{1}\right)=0$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{\mathrm{i}}\right)=13 \mathrm{i}-9,2 \leq \mathrm{i} \leq \mathrm{n}$
$f\left(\mathrm{v}_{4}{ }^{1}\right)=3$
$\mathrm{f}\left(\mathrm{v}_{4}{ }^{\mathrm{i}}\right)=13 \mathrm{i}-5,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v} \mathrm{v}^{1}\right)=12$
$\mathrm{f}\left(\mathrm{vs}^{\mathrm{i}}\right)=13 \mathrm{i}-4,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{6}{ }^{1}\right)=13$
$\mathrm{f}\left(\mathrm{v}_{6}{ }^{\mathrm{i}}\right)=13 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{1}{ }^{1}\right)=1$
$\mathrm{f}\left(\mathrm{w}_{1}{ }^{\mathrm{i}}\right)=13 \mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{2}{ }^{1}\right)=6$
$\mathrm{f}\left(\mathrm{w}_{2}{ }^{\mathrm{i}}\right)=13 \mathrm{i}-12,2 \leq \mathrm{i} \leq \mathrm{n}$
The edges are labeled with
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{1} \mathrm{v}_{1}{ }^{1}\right)=5$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{\mathrm{i}} \mathrm{v}_{1}{ }^{\mathrm{i}}\right)^{1}=13 \mathrm{i}-9,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{1} \mathrm{v}_{2}{ }^{1}\right)=7$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}} \mathrm{v}_{2}{ }^{\mathrm{i}}\right)=13 \mathrm{i}-10,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{1} \mathrm{v}_{6}{ }^{1}\right)=11$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{\mathrm{i}} \mathrm{v}_{6}{ }^{\mathrm{i}}\right)=13 \mathrm{i}-5,2 \leq \mathrm{i} \leq \mathrm{n}$
$f\left(v_{1}{ }^{1} v_{4}{ }^{1}\right)=4$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}} \mathrm{v}_{4}{ }^{\mathrm{i}}\right){ }^{\prime}=13 \mathrm{i}-8,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{1} \mathrm{v}_{5}{ }^{1}\right)=9$
$\mathrm{f}\left(\mathrm{v}_{2}^{\mathrm{i} v} \mathrm{v}^{\mathrm{i}}\right)^{\mathrm{i}}=13 \mathrm{i}-6,2 \leq \mathrm{i} \leq \mathrm{n}$
$f\left(v_{3}{ }^{1} v_{4}{ }^{1}\right)=3$
$\mathrm{f}\left(\mathrm{v}^{\mathrm{i}} \mathrm{i}^{\mathrm{i}}\right)=13 \mathrm{i}-7,2 \leq \mathrm{i} \leq \mathrm{n}$

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{5}{ }^{1} \mathrm{~V}_{6}{ }^{1}\right)=12 \\
& \mathrm{f}\left(\mathrm{~V}_{5}{ }^{\mathrm{i}} \vee_{6}{ }^{\mathrm{i}}\right)=13 \mathrm{i}-3,2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{3}{ }^{1} \mathrm{~W}_{1}{ }^{1}\right)=1 \\
& \mathrm{f}\left(\mathrm{v}_{3}{ }^{\mathrm{i}} \mathrm{~W}_{1}{ }^{\mathrm{i}}\right)=13 \mathrm{i}-4,2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{~V}_{4}{ }^{1} \mathrm{~W}_{1}{ }^{1}\right)=2 \\
& \mathrm{f}\left(\mathrm{v}_{4}{ }^{\mathrm{i}} \mathrm{~W}_{1}{ }^{\mathrm{i}}\right)=13 \mathrm{i}-2,2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{~V}_{5}{ }^{1} \mathrm{~W}_{1}{ }^{1}\right)=10 \\
& \mathrm{f}\left(\mathrm{v}_{5}{ }^{\mathrm{i}} \mathrm{~W}_{1}{ }^{\mathrm{i}}\right)=13 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{~V}_{6}{ }^{1} \mathrm{~W}_{1}{ }^{1}\right)=13 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{1}{ }^{1} \mathrm{~W}_{2}{ }^{1}\right)=6 \\
& \mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}} \mathrm{w}_{2}{ }^{\mathrm{i}}\right)=13 \mathrm{i}-12,2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{2}{ }^{1} \mathrm{~W}_{2}{ }^{1}\right)=8 \\
& \mathrm{f}\left(\mathrm{v}_{2}{ }^{\mathrm{i}} \mathrm{w}_{2}{ }^{1}\right)=13 \mathrm{i}-11,2 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

Thus " f " admits Contra Harmonic Mean Labeling of G. Hence $\mathrm{nDS}\left(\mathrm{P}_{2} \odot \mathrm{~K}_{3}\right)$ is a Contra Harmonic Mean graph.

Example: 2.12

Contra Harmonic Mean Labeling of 4DS $\left(\mathrm{P}_{2} \odot \mathrm{~K}_{3}\right)$ shown in Figure 13.

Figure:13

Theorem: 2.13

The graph $n D S\left(\mathrm{~K}_{1,3}\right)$ is a Contra Harmonic Mean graph.

Proof:-

Let $\mathrm{G}=\mathrm{nDS}\left(\mathrm{K}_{1,3}\right)$. Let the vertex set of G be $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \mathrm{U}$ \qquad $\cup V_{n}$. Let $V=\left\{v_{1}{ }^{i}, v_{2}{ }^{i}, v_{3}{ }^{i}, v_{4}{ }^{i}, w_{1}{ }^{i} / 1 \leq i \leq n\right\}$ be the vertex set of $\mathrm{i}^{\text {th }}$ copy of $\mathrm{DS}\left(\mathrm{K}_{1,3}\right)$

The graph $\mathrm{DS}\left(\mathrm{K}_{1,3}\right)$ is shown in Figure 14.

Figure: 14
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1, \ldots . \mathrm{q}\}$ by
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{1}\right)=4$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}}\right)=6 \mathrm{i}-5,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{1}\right)=6$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{\mathrm{i}}\right)=6 \mathrm{i}-4,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{1}\right)=0$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{\mathrm{i}}\right)=6 \mathrm{i}-2,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{4}{ }^{1}\right)=1$
$\mathrm{f}\left(\mathrm{v}_{4}{ }^{\mathrm{i}}\right)=6 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{1}{ }^{1}\right)=2$
$\mathrm{f}\left(\mathrm{w}_{1}{ }^{\mathrm{i}}\right)=6 \mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{n}$
The edges are labeled with
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{1} \mathrm{v}_{2}{ }^{1}\right)=6$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}} \mathrm{v}_{2}{ }^{\mathrm{i}}\right)=6 \mathrm{i}-5,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{1} \mathrm{v}_{3}{ }^{1}\right)=4$

```
\(\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}} \mathrm{v}_{3}{ }^{\mathrm{i}}\right)=6 \mathrm{i}-4,2 \leq \mathrm{i} \leq \mathrm{n}\)
\(\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}} \mathrm{v}_{4}{ }^{\mathrm{i}}\right)=6 \mathrm{i}-3,1 \leq \mathrm{i} \leq \mathrm{n}\)
\(\mathrm{f}\left(\mathrm{v}_{2}{ }^{1} \mathrm{w}_{1}{ }^{1}\right)=5\)
\(\mathrm{f}\left(\mathrm{v}_{2}{ }^{\mathrm{i}} \mathrm{w}_{1}{ }^{\mathrm{i}}\right)=6 \mathrm{i}-2,2 \leq \mathrm{i} \leq \mathrm{n}\)
\(\mathrm{f}\left(\mathrm{v}_{3}{ }^{1} \mathrm{~W}_{1}{ }^{1}\right)=2\)
\(\mathrm{f}\left(\mathrm{V}_{3}{ }^{\mathrm{i}} \mathrm{w}_{1}{ }^{\mathrm{i}}\right)=6 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n}\)
\(\mathrm{f}\left(\mathrm{v}_{4}{ }^{1} \mathrm{~W}_{1}{ }^{1}\right)=1\)
\(\left.\mathrm{f}\left(\mathrm{v}_{4}{ }^{\mathrm{i}} \mathrm{W}_{1}{ }^{\mathrm{i}}\right)=6 \mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{n}\right)\)
```

Thus $n \mathrm{DS}\left(\mathrm{K}_{1,3}\right)$ admits Contra Harmonic Mean Labeling. Hence $\mathrm{nDS}\left(\mathrm{K}_{1,3}\right)$ is a Contra Harmonic Mean graph.

Example: 2.14

Contra Harmonic Mean Labeling of $4 \mathrm{DS}\left(\mathrm{K}_{1,3}\right)$ is displayed in Figure 15

Figure: 15

Theorem: 2.15

The graph $\mathrm{nDS}\left(\mathrm{C}_{3} \odot \mathrm{~K}_{1}, 2\right)$ is a Contra Harmonic Mean graph.

Proof:-

Let $\mathrm{G}=\mathrm{nDS}\left(\mathrm{C}_{3} \odot \mathrm{~K}_{1,2}\right)$. Let the vertex set of G be $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \mathrm{U} \ldots \ldots . . \mathrm{U} \mathrm{V}_{\mathrm{n}}$. Let $\mathrm{V}=\left\{\mathrm{v}_{1}{ }^{\mathrm{i}}, \mathrm{v}_{2}{ }^{\mathrm{i}}, \mathrm{v}_{3}{ }^{\mathrm{i}}, \mathrm{v}_{4}{ }^{\mathrm{i}}, \mathrm{v}_{5}{ }^{\mathrm{i}}, \mathrm{w}_{1}{ }^{\mathrm{i}}, \mathrm{w}_{2}{ }^{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ is the vertex set of $\mathrm{i}^{\text {th }}$ copy of $\mathrm{DS}\left(\mathrm{C}_{3} \odot \mathrm{~K}_{1,2}\right)$.

The graph $\mathrm{DS}\left(\mathrm{C}_{3} \odot \mathrm{~K}_{1,2}\right)$ is shown in Figure16

Figure: 16
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1, \ldots \ldots \mathrm{q}\}$ by
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{1)}=0\right.$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}}\right)=9 \mathrm{i}-7,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{1}\right)=3$
$\mathrm{f}\left(\mathrm{v}_{2}{ }^{\mathrm{i}}\right)=9 \mathrm{i}-5,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{1}\right)=5$
$\mathrm{f}\left(\mathrm{v}_{3}{ }^{\mathrm{i}}\right)=9 \mathrm{i}-4,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{4}{ }^{1}\right)=8$
$\mathrm{f}\left(\mathrm{v} \mathrm{m}^{\mathrm{i}}\right)=9 \mathrm{i}-2,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v} 5^{1}\right)=6$
$\mathrm{f}\left(\mathrm{v} 5^{\mathrm{i}}\right)=9 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{1}{ }^{\mathrm{i}}\right)=9 \mathrm{i}-8,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{2}{ }^{\mathrm{i}}\right)=9 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$
The edges are labeled with
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{1} \mathrm{v}_{2}{ }^{1}\right)=3$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}} \mathrm{v}_{2}{ }^{\mathrm{i}}\right)=9 \mathrm{i}-6,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{1}{ }^{1} \mathrm{v}_{3}{ }^{1}\right)=5$

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}} \mathrm{~V}_{3}{ }^{\mathrm{i}}\right)=9 \mathrm{i}-5,2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{2}{ }^{1} \mathrm{v}_{3}{ }^{1}\right)=4 \\
& \mathrm{f}\left(\mathrm{v}_{2}{ }^{\mathrm{i}} \mathrm{~V}_{3}{ }^{\mathrm{i}}\right)=9 \mathrm{i}-4,2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{3}{ }^{1} \mathrm{v}_{5}{ }^{1}\right)=6 \\
& \mathrm{f}\left(\mathrm{~V}_{3}{ }^{\mathrm{i}} \mathrm{~V}_{5}{ }^{\mathrm{i}}\right)=9 \mathrm{i}-2,2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{3}{ }^{1} \mathrm{v}_{4}{ }^{1}\right)=7 \\
& \mathrm{f}\left(\mathrm{~V}_{3}{ }^{\mathrm{i}} \mathrm{~V}_{4}{ }^{\mathrm{i}}\right)=9 \mathrm{i}-3,2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{1}{ }^{\mathrm{i}} \mathrm{w}_{1}{ }^{\mathrm{i}}\right)=9 \mathrm{i}-8,1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{2}{ }^{1} \mathrm{w}_{1}{ }^{1}\right)=2 \\
& \mathrm{f}\left(\mathrm{v}_{2}{ }^{\mathrm{i}} \mathrm{w}_{1}{ }^{\mathrm{i}}\right)=9 \mathrm{i}-7,2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{5}{ }^{1} \mathrm{w}_{2}{ }^{1}\right)=8 \\
& \mathrm{f}\left(\mathrm{v}_{5}{ }^{\mathrm{i}} \mathrm{w}_{2}{ }^{\mathrm{i}}\right)=9 \mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{4}{ }^{1} \mathrm{w}_{2}{ }^{1}\right)=9 \\
& \mathrm{f}\left(\mathrm{v}_{4}{ }^{\mathrm{i}} \mathrm{w}_{2}{ }^{\mathrm{i}}\right)=9 \mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

Thus " f " admits Contra Harmonic Mean Labeling of G. Hence $n D S\left(\mathrm{C}_{3} \odot \mathrm{~K}_{1,2}\right)$ is a Contra Harmonic Mean graph.

Example:2.16

Contra Harmonic Mean Labeling of $4 \mathrm{DS}\left(\mathrm{C}_{3} \odot \mathrm{~K}_{1,2}\right)$ is given in Figure 17.

Figure: 17

References:

[1] J.A. Gallian, A Dynamic Survey of Graph Labeling. The electronic journal of Combinatories (2019)
[2] Harary F 1988, ‘Graph Theory', Narosa Publishing House, New Delhi.
[3] S.Somosundaram and S.S. Sandhya, (2012) 'Harmonic Mean Labeling of Graphs’,
Ph.D thesis, Manonmanam Sundaranar University, Tirunelveli, India.
[4] S.S. Sandhya, E.Ebin Raja Merly and B. Shiny (2015),'Super Geometric Mean Labeling', Journal of Combinatories Information and System Sciences,Vol.40, no. 1-4, p.21-31.
[5] S.S. Sandhya, S.Somasundaram and J.Rajeshni Golda (2017), 'Contra Harmonic Mean Labeling of Disconnected Graphs’, Global Journal of Mathematical Sciences: Theory and Practical, Vol.9, no. 1, p. 1-15.
[6] Silviya Francis, V Balaji (2017), 'Mean Labeling on Degree Splitting Graph of Star Graph', International Journal of Advances in Applied Mathematics and Mechanics, Vol. 5 (2), p. $25-29$.

